Knapsack feasibility as an absolute value equation solvable by successive linear programming
نویسنده
چکیده
We formulate the NP-hard n-dimensional knapsack feasibility problem as an equivalent absolute value equation (AVE) in an n-dimensional noninteger real variable space and propose a finite succession of linear programs for solving the AVE. Exact solutions are obtained for 1880 out of 2000 randomly generated consecutive knapsack feasibility problems with dimensions between 500 and one million. For the 120 approximately solved problems the error consists of exactly one noninteger component with value in (0,1), which when replaced by 0, results in a relative error of less than 0.04%. We also give a necessary and sufficient condition for the solvability of the knapsack feasibility problem in terms of minimizing a concave quadratic function on a polyhedral set. Average time for solving exactly a million-variable knapsack feasibility problem was less than 14 seconds on a 4 Gigabyte machine.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملAbsolute value programming
We investigate equations, inequalities and mathematical programs involving absolute values of variables such as the equation Ax + B|x| = b, where A and B are arbitrary m × n real matrices. We show that this absolute value equation is NP-hard to solve, and that solving it solves the general linear complementarity problem. However, we propose a concave minimization problem for its solution that i...
متن کاملAbsolute Value Equation Solution Via Linear Programming
By utilizing a dual complementarity property, we propose a new linear programming method for solving the NP-hard absolute value equation (AVE): Ax−|x| = b, where A is an n×n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving a few linear programs, typically less than four. The algorithm was tested on 500 consecutively generated random sol...
متن کاملA hybrid algorithm for solving the absolute value equation
We propose a hybrid algorithm for solving the NP-hard absolute value equation (AVE): Ax−|x| = b, where A is an n×n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving iteratively a linear system of equations followed by a linear program. The algorithm was tested on 100 consecutively generated random solvable instances of the AVE with n =50...
متن کاملLinear complementarity as absolute value equation solution
We consider the linear complementarity problem (LCP): Mz + q ≥ 0, z ≥ 0, z′(Mz + q) = 0 as an absolute value equation (AVE): (M + I)z + q = |(M − I)z + q|, where M is an n× n square matrix and I is the identity matrix. We propose a concave minimization algorithm for solving (AVE) that consists of solving a few linear programs, typically two. The algorithm was tested on 500 consecutively generat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Letters
دوره 3 شماره
صفحات -
تاریخ انتشار 2009